Name

www.PapaCambridge.com

CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

COMBINED SCIENCE

0653/02

Paper 2

October/November 2003

1 hour

Candidates answer on the Question Paper. No Additional Materials are required.

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in. Write in dark blue or black pen in the spaces provided on the Question Paper. You may use a soft pencil for any diagrams, graphs, tables or rough working. Do not use staples, paper clips, highlighters, glue or correction fluid.

Answer all questions.

At the end of the examination, fasten all your work securely together. The number of marks is given in brackets [] at the end of each question or part question. A copy of the Periodic Table is printed on page 16.

If you have been given a label, look at the details. If any details are incorrect or missing, please fill in your correct details in the space given at the top of this page.

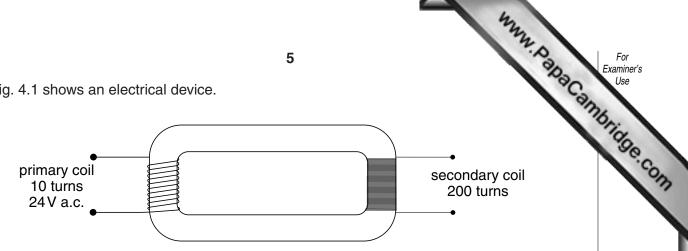
Stick your personal label here, if provided.

For Exam	iner's Use
1	
2	
3	
4	
5	
6	
7	
8	
9	
Total	

www.papaCambridge.com Windfarms are areas of land containing many wind turbines. Four thousand wind can produce the same power as one coal-fired power station. (a) (i) State the main energy change that takes place in a wind turbine. energy ightarrow energy (ii) Complete the sequence of energy changes in a coal-fired power station. kinetic heat energy energy energy energy [2] (b) Wind power is said to be a renewable source of energy. Explain what the term renewable means.[1] (c) Nuclear fission is used to produce electricity in nuclear power stations. The Sun's energy is produced by nuclear fusion.

Explain the difference between nuclear fission and nuclear fusion.

2 A boy went to his doctor because he felt tired all the time.


His doctor took a sample of his blood. The doctor tested the blood. She found that the blood not have enough red blood cells.

The doctor told the boy that he was suffering from anaemia. She explained to the boy that he should eat more iron in his diet.

(a)	(i)	What do red blood cells do?
	(ii)	Explain why not having enough red blood cells made the boy feel tired.
		[2
(b)	(i)	Explain why eating more iron would help the boy to increase the number of reblood cells in his body.
	(ii)	The boy asked his doctor to tell him which kinds of foods he should eat, in order to get more iron. Name two foods that she might have suggested.
		[2]

		8.	Examiner's
3	(a) (i)	The formula of chlorine molecules is Cl_2 .	Use
		Explain what this formula means.	TO TO
			Examiner's Use
		[1]	13
	(ii)	An atom of chlorine has a proton number of 17 and a nucleon number of 35.	
		A diagram of this chlorine atom is shown in Fig. 3.1. Complete the labelling of the diagram.	
		nucleus containing	
	* *	17andneutrons	
	* *	XX XX	
		X X X	
		Fig. 3.1	
		plain why chlorine is sometimes used to treat drinking water before it is supplied to mes.	

Fig. 4.1 shows an electrical device.

		Fig. 4.1
(a)	Nan	ne this device.
(b)	Cald	culate the output voltage. Show your working and state any formula that you use.
	form	nula
	wor	king
	wor	KING
(c)		volts [2] ctricity is transmitted for long distances through cables. y does the voltage need to be high for transmission over long distances?
		[2]
(d)		electricity supply is $240\mathrm{V}$ a.c. The frequency of the electricity supply is $50\mathrm{Hz}$. lain the meaning of the following terms.
	(i)	a.c
	(ii)	[2]
		[1]

- 5 The words on the left in Fig. 5.1 are ecological terms.
- www.PapaCambridge.com (a) Match each word with its definition by drawing a line between them. One has been do for you.

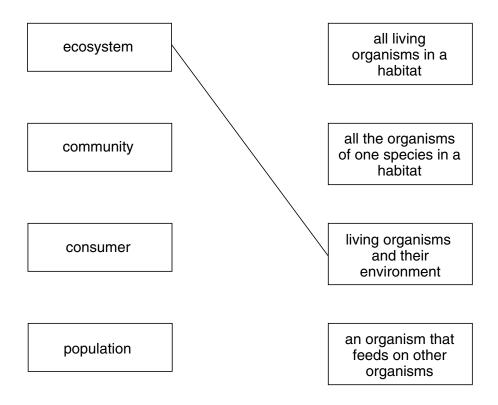


Fig. 5.1

[2]

(b) A student investigated the population of snails in a wood. She collected 50 sna measured the shell length of each one. She also recorded the number of stripes on shells.

Fig. 5.2 shows the graphs that she drew to display her results.

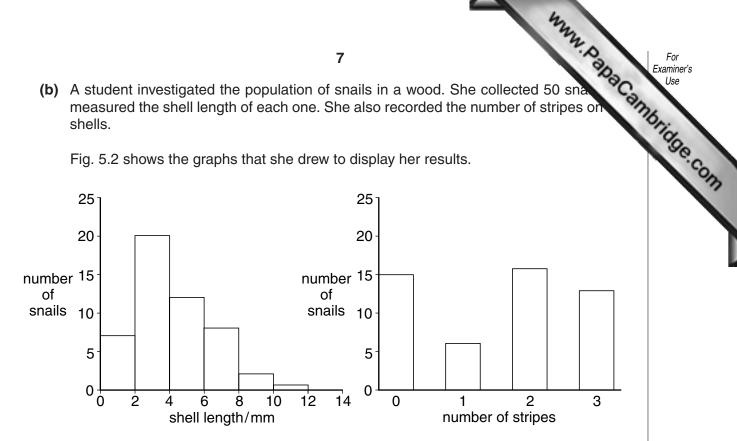
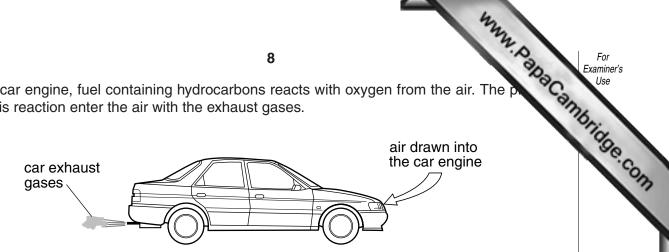


Fig. 5.2

The student thought that the variation in the length of the snail shells could be caused by their environment.

Suggest one environmental factor that could cause the variation in the length of the snail shells.


F 4 3	1
11	ш
 11.	

The student thought that the variation in the number of stripes was probably (ii) caused by the snails' genes.

The student was able to keep the snails for many months in order to investigate this.

What should she do, and what result should she look for?	
	2

In a car engine, fuel containing hydrocarbons reacts with oxygen from the air. The 6 of this reaction enter the air with the exhaust gases.

(a)	(i)	Name the element that makes up nearly 79% of the air.
		[1]
	(ii)	The gas argon is present in air. Explain why argon does not react with the hydrocarbon fuel in the car engine.
		[1]
	(iii)	Explain why it is very dangerous to leave a car engine running inside a closed building.
		[2]
(b)		energy needed to launch a space shuttle is released when a mixture of hydrogen oxygen react to form the compound water.
	(i)	The symbolic equation for this reaction is shown below.
		$2H_2 + O_2 \rightarrow 2H_2O$
		This equation is said to be <i>balanced</i> . Explain what this means.
		[1]
	(ii)	Describe one way in which a mixture of two gaseous elements is different from a compound of the same elements.
		[1]

For Examiner's Use

On	hydrocarbon fuels.	(0)
	[2]	

[Question 7 can be found on page 10]

Fig. 7.1 shows a racing car. It is designed to accelerate rapidly and to go very fast.	For Examiner's Use
Fig. 7.1	_
(a) The car took 1.2 hours to complete a race of 288 kilometres.	
Calculate the average speed of the car in kilometres per hour. Show your working and state any formula that you use.	
formula	
working	
km/h [2]	

(b) A speed/time graph for the car is shown in Fig. 7.2. It shows the motion of the a 26 second period.

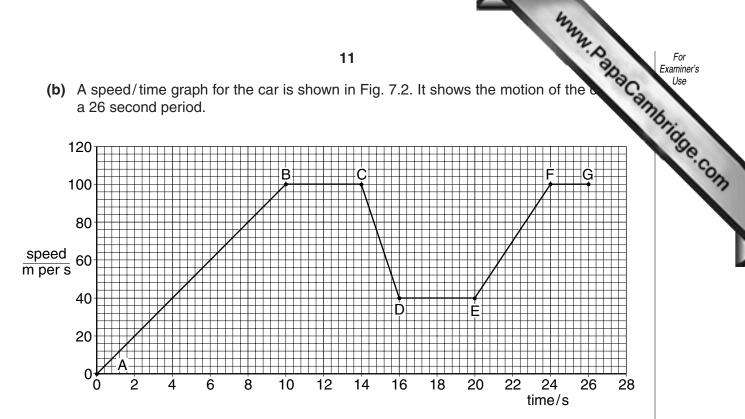


Fig. 7.2

At which point is the car not moving?	
	[1]
State one part of the graph when the car was travelling at a constant spe Explain your answer.	eed
	[2
State one part of the graph when the car was slowing down.	
	[1]
	State one part of the graph when the car was travelling at a constant special Explain your answer.

8 Fig. 8.1 shows the structure of the contents of the human thorax (chest).

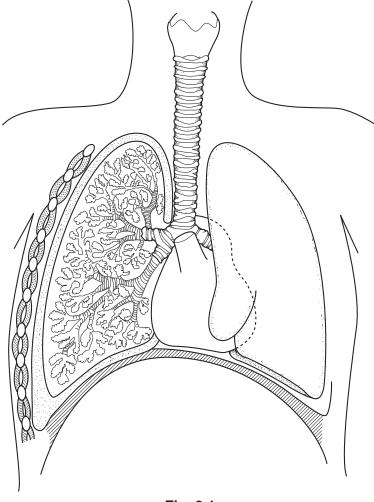


Fig. 8.1

- (a) On Fig. 8.1, draw label lines to each of the following structures and label them with the appropriate letter.
 - A a pleural membrane
 - **B** a bronchus
 - C the place where gas exchange takes place
 - **D** the heart

[4]

(b) The lining of the trachea contains

- goblet cells and
- cells with cilia.

	Why was
	13
The	e lining of the trachea contains
•	Ining of the trachea contains goblet cells and cells with cilia. Describe how these cells help to keep the lungs clean.
(i)	Describe how these cells help to keep the lungs clean.
	[2]
(ii)	Explain how smoking can lead to the development of bronchitis.
	[2]

[Question 9 can be found on page 14]

[1]

(a) Choose words from the list below to complete the passage. Each word is used 9 not at all.

of copper chloride solution.

copper chloride \rightarrow

					4	2
				14		7. Day
(a)	The characteristics of the list below to complete the passage. Each word is used not at all. All characteristics All characteri					
			aluminium	electrolyte	positive	
			anode	iron	solution	
			cathode	negative	sulphur	
	Elec	ctrolysis is a pro	cess used in inc	dustry to make in	nportant elements such	
	as.					
	In electrolysis a pair of electrodes dip into a liquid called an					
	ions	have a	char	ge and are attra	cted towards the	[4]
b)	(i)	Describe one chloride solution		t would be mad	le during the electrolysis	s of copper
						[1]
	(ii)	In electrolysis,	compounds are	split into their el	ements.	

Complete the word chemical equation for the reaction that occurs in the electrolysis

15

BLANK PAGE

www.PapaCambridge.com

	e Elements
Ш	Ę
뿌	ਨ
SHEET	Table (
₹	ab.
DATA	()
_	ğ
	Peric
	e F
	The

								Gre	Group									
_	=												<u>N</u>	^	N	NII V	0	
							1 T Hydrogen										4 He Helium	
Lithium 4	9 Be Beryllium											11 Boron 5	12 Carbon 6	14 N itrogen 7	16 Oxygen 8	19 Fluorine	20 Ne Neon 10	
23 Sodium	24 Mg Magnesium	T										27 A1 Aluminium 13	28 Silicon	31 Phosphorus	32 S Sulphur	35.5 Ct Chlorine	40 Ar Argon	
66 ×	O 40	45 Sc	48 =	51	ن و2	ss Mn	56 Fe	°29	²⁶	64 Cu	es Zn	70 Ga	73 Ge	75 As	Se 79	80 B	84 7	
otassium 2	Calcium 20	Scandium 21	Titanium 22	Vanadium 23	Chromium 24	Manganese 25	Iron 26	Cobalt 27	Nickel 28	Copper 29	Zinc 30	Gallium 31	Germanium 32	Arsenic 33	Selenium 34	Bromine 35	Krypton 36	1
82	88 (68	91	93	96	ı	101	103	106	108	112	115	119	122	128	127	131	6
Bb	Strontium	Yttrium	Zirconium	Niobium	Molybdenum	Tc Technetium	Ru thenium	Rhodium	Pd Palladium	Ag Silver	Cadmium	Indium	S =	Sb Antimony	Tellurium	lodine	Xe Xenon	
133	137	139	178	181	184	186	190	192	195	197	201	204	207	209	25	20	† C	
CS	Ва	La	Ξ	_a	>	Re	s _O	ļ	풉	Αu	Β̈́Ξ	11	Рр	.	Ъ	Ą	Ru	
Saesium	Barium 56	Lanthanum 57 *	Hafnium 72	Tantalum 73	Tungsten 74	Rhenium 75	Osmium 76	Iridium 77	Platinum 78	Gold 79	Mercury 80	Thallium 81	Lead 82	Bismuth 83	Polonium 84	Astatine 85	Radon 86	
	226	227																
Fr	Ba dium	Actinium																
	88	+ 68																
3-71 Lanthanoid series 0-103 Actinoid series	othanoic ctinoid	d series series		140 Cerium	Pr Praseodymium	Neodymium	Pm Promethium	150 Sm Samarium	152 Eu Europium	157 Gd Gadolinium	159 Tb Terbium	162 Dy Dysprosium	165 H Olmium	167 Er Erbium		173 Yb Ytterbium	175 Lu Lutetium	
	0	a = relative atomic mass	nic mass	28	26	09	61	62	63	64	65	99	29	88	69	70	1	44
` ^		X = atomic symbol	lod	7 Th	Ра	C 38	Ν	Pu	Am	Cm	BK	₽	Es	Fm	Md	8 N	Lr	w.
٩	۹ 	b = proton (atomic) number	ic) number	Thorium 90	Protactinium 91	Uranium 92	Neptunium 93	Plutonium 94	Americium 95	Curium 96	Berkelium 97	Californium 98	Einsteinium 99	Fermium 100	Mendelevium 101	Nobelium 102	Lawre 102	000
				The v	The volume of one mole of any gas is 24 dm 3 at room temperature and pressure (r.t.p.).	one mole	of any ga	ıs is 24 dr	n³ at roon	n tempera	ture and	pressure	(r.t.p.).				Can	1
																10	76	
																de.c	1	
															1	Or Or		OTT

The volume of one mole of any gas is $24\,\mathrm{dm}^3$ at room temperature and pressure (r.t.p.).